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ERRATA FOR PUBLICATION 112

PAGE 9, FIGURE 8: Appendix II1, in Key, and Appen-
dix I, in caption, should read Appendix IV.

PAGE 9, FIGURE 10: Abbreviations on figure:

1AG:
OP:

Island arc granitoids
Oceanic palgiogranites
Post-orogenic granitoids

: Continental epeirogenic uplift granitoids

Rift-related granitoids
Continental granitoids
Continental arc granitoids
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GOLD MINERALIZATION, AND TIN, BASE METALS, AND THORIUM
ANOMALIES AT YANKEE HORSE RIDGE, IRISH CREEK TIN AREA,
ROCKBRIDGE COUNTY, VIRGINIA

Richard S. Good

ABSTRACT

Gold mineralization was identified by soil geochemistry
on Yankce Horse Ridge three miles southwest of the aban-

doned Irish Creek tin mines in the central Blue Ridge prov-

ince of Virginia. The highest concentrations of gold in the
soil samples ranged from 0.33 to 0.51 ppm. Anomalous tin
(44 ppm), lead (521 ppm), zinc (457 ppm), copper (59 ppm),
arsenic (25 ppm), rubidium (70 ppm), and thorium (45 ppm)
are also present in the soil samples. Samples of mylonitic
bedrock, exposed by shallow trenching, have whole-rock
assays of up to 0.17 ounces/short ton (5.8 ppm) of gold. The
bedrock is hydrothermally altered and sheared, gray to green-
ish-gray, aphanitic, felsic quartz monzonite with sparse,
limonitic and hematitic vugs with sparse boxworks, and
contains disseminated relict pyrite, jarosite, and beudan-
tite(?). The slightly deformed bedrock is leucocratic quartz
monzonite, which in places is felsic enough to be classed as
analaskite, Some highly sheared rock contains smoky-quartz
clasts. Subvolcanic rhyodacite and basalt dikes occur at and
near the anomaly. About 700 feet north-northwest of the
anomaly is an occurrence of pyrrhotite, arsenopyrite, chal-
copyrite, and fluorite mineralization with anomalous arsenic
(600 ppm) and fluorine (5495 ppm) in the soil.

The Yankee Horse Ridge prospect is less than 800 feet
from a fluorite-bearing biotite granite on Nettle Mountain
(informally called the Nettle Mountain granite). This biotite
granite is intruded into a Grenville-age clinopyroxene-hyper-
sthene-hornblende granulite gneiss with a contact zone con-
taining felsic dikes and xenoliths. The Nettle Mountain
granite contains a chemical signature, including a Rb/Srratio
of 5.05, characteristic of highly differentiated, volatile-rich
intrusives similar to those associated with tin districts in
England, Nigeria, Australia, and Canada. The Nettle Moun-
tain granite has generated enrichments of up to 14.5 ppm
beryllium in soil and 6 ppm in nearby stream sediments, The
stream sediment values are similar to those found in sedi-
ments downstream from the Irish Creek tin mines.

The rocks enclosing the mineral deposit are part of a
complex allochthonous imbricate tectonic thrust sheet, with
a northeast trend and southeast low-angle dip, that lies over
lower Paleozoic-age clastic sedimentary rocks. Thrust sheets
in the area are characterized by anastomosing, cataclastic
zones west of the Rockfish Valley fault. Gold mineralization
on Yankee Horse Ridge may have been generated from
paleo-hot springs associated with subvolcanic rhyolite dikes
presentin the Late Precambrian-age, Crossnore-related Nettle
Mountain fluorite-biotite pluton. The gold mineralization
could also have been controlled by metal-rich brines or
possibly much younger, metal-rich solutions that were remo-
bilized following reactivated paleo-rift faults. These faults
are now mapped as low-angle mylonitic thrust zones.

INTRODUCTION

This study describes the results of a geochemical inves-
tigation for tin and precious metals in the Irish Creek area of
Rockbridge County. Except for negligible placer deposits in
Alaska there is no significant primary production of tin in the
United States (Carlin, 1988). The only tin mine in Virginiais
at Irish Creek, Rockbridge County. This small operation has
been inactive for more than 70 years (Figure 1).

The recorded occurrences of gold and silver in the
vicinity of the Irish Creek mines indicate that the area has the
potential for precious metals as well as tin. Hotchkiss (1883)
reported values of 0.1 to 7.36 ounces/short ton of gold 3.4 -
252 ppm) and 38 to 73.73 ounces/short ton (2528 ppm) of
silverin the arsenopyrite in the vicinity of Irish Creek. Brown
(1885) also noted auriferous arsenopyrite occurring with
wolframite and cassiterite. A recent assay for gold on an
arsenopyrite sample from the #2 dump at Irish Creek indi-
cates 7.8 ounces/short ton (267 ppm) of goldand 11.1 ounces/
short ton (381 ppm) of silver (Virginia Division of Mineral
Resources samples, 1985).

Sulfide mineralization (pyrrhotite) occurs about 3 miles
southwest of the Irish Creek tin mines along Nettle Creck, a
tributary of Irish Creek (Herbert L. Grow, personal commu-
nication, 1985; Figure 2A, traverse F). Assay records at the
Virginia Division of Mineral Resources indicate that pyrrhotite
from this locality contains negligible gold and silver. There
are stories of a small gold mine or gold prospect that was
worked by Hubbard near the headwaters of Nettle Creek in
the late 1800s or early 1900s (Herbert Clark, personal com-
munication, 1985). This prospect might be the sulfide occur-
rence, F, on Nettle Creek. However, the Hubbard prospect(?)
was never located with certainty by the writer. On the east
bank of Nettle Creek at the pyrrhotite locality (Figure 2A,
traverse F), the writer identified white fluorite, arsenopyrite,
and chalcopyrite in a mafic granulite gneiss. There is no
visible evidence of an adit or shaft in the area, but several
cylindrical marks that indicate very limited drilling and
blasting can be observed on a rock face along the creek.
Analysis on one of three soil samples taken near the site
(traverse F) indicates 600 ppm arsenic, 5495 ppm fluorine,
492 ppm copper, and 132 ppm lead (Appendix I, sample 3W-
1). There is a series of very shallow, barely visible, 5 feet
long, 1 to 2 feet deep exploration trenches about 800 feet up
slope from the Nettle Creek sulfide-fluorite occurrence. The
trenches are on a spur on the west slope of Yankee Horse
Ridge (Figure 2A, traverse C-C'). The Nettle Creek sulfide-
fluorite occurrence is located along the eastern contact of a
small, fluorite-bearing biotite granite that is intrusive into
Grenville-age granulites (Figure 2A). The granite at Nettle
Mountain has been described by Hudson (1981). Fordham
(1978) analyzed stream sediments from this same area and
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EXPLANATION

Irish Creek mine (Sn)

Yankee Horse Ridge prospect (Au)

Buck Mountain mine (Ag, Au)

Jack’s Hill mine (Au, Ag)

Colleen prospect (Au, Ag, Pt)

Ivy Creek prospect (Au)

Faber mine (Pb, Zn, Ag)

Allen mine (Cu)

Roseland anorthosite titanium deposits (Ti)
10 - Iron, manganese, and iron-manganese mines

1
2
3
4
5
6
7
8.
9

Triassic-Jurassic JTr
siltstone, feldspathic sandstone, and conglomerate of the Scottsville
1ift basin

Cambrian Crse
marine limestone, dolomite, shale, and sandstone of the Valley and
Ridge province; Rome, Shady, and Erwin Formations

Cambrian Cch

Chilhowee Group: arenitic shelf to shore face sedimentary rock,
phyllite, metasiltstone, feldspathic sandstone, with 2 minor amount
of basalt at the base

Late Precambrian ct
Catoctin Formation: rift-related metabasalt and minor amounts of
sedimentary rock

Late Precambrian LY

Lynchburg Group (Ashe Formation, Alligator Back Formation):
rift-related oceanic metasediment, generally deeper water deposits
of the continental slope with some shallow water deposits; turbidite,
submarine conglomerate, and includes greenstone which may rep-
resent a partial ophiolitic sequence

Late Precambrian LY(?)
deep water metasediment, dominantly schist with quartzite, marble,
amphibolite, and felsic gneiss, mapped as the Evington Group,
Paleozoic metasediment

Late Precambrian cn
Candler Formation: phyllite with quartzite and marble

Late Precambrian mr

Mechum River Formation: rift-related shallow water arkose with
conglomerate and conglomerate with coalescing fans of conglom-
erate

Late Precambrian

Crossnore Suite pluton: biotite granitc and granodiorite with fluo-

rite and accessory rare earth minerals
NM-Nettle Mountain granite, 637 m.y. (7)
MM-Mobley Mountain granite, 652 m.y.
WM-Woods Mountain pluton age not determined
RF-Rockfish 573 m.y.

Precambrian Pc

Pedlar Complex: Grenville (~1100 m.y.) and Pre-Grenville (~1700
m.y.) age massive and layered chamockite, massive and layered
granulite gneiss, leucocratic quartz monzonite and alaskite; domi-
nantly pyroxene and pyroxene with homblende-bearing granulite
facies rocks characterized by anastomosing, narrow mylonite zones
and bands which pervade a southeast-dipping, northeast-trending
stack of thrust plates; steeply dipping to vertical northwest-trending
transverse faults.

Precambrian Le

Lovingston Complex: Grenville (~1100 m.y.) and pre-Grenville
(~1700 m.y.) biotite augen gneiss, granulite gneiss, minor char-
nockite, granite, ferrodiorite, anorthosite and nelsonite; dominantly
biotite-and homblende-bearing rocks with minor pyroxene; sepa-
rated from the Pedlar Terrane by the Rockfish Valley mylonite
thrust zone

RA-Roseland anorthosite
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traverses across Nettle Mountain and Yankee Horse Ridge,
Mo_ntebello 7.5- minute quadrange, Rockbridge County, Vir-
ginia.

Figure 2B. Location and topography of geochemical trav-
erses A-A and B-B across and close to Irish Creek tin mine,
#1 working, Montebello 7.5-minute quadrangle, Rockbridge
County, Virginia.

found an anomalously high beryllium signature similar to
anomalous values downstream from the Irish Creek tin mines

(Figure 3). There are also slightly elevated fluoride values
(180 and 240 parts per billion) in the stream water near the
Nettle Creek showings, but not as high as fluoride values
downstream from the tin mines (910 parts per billion) (Figure
4). Fresh waters average 100 ppb (Rose and others, 1979),

® > 3 Sid dev. above arithmelic mean
O  background

Ny Nellie Mountain
N fluorite biotite granite
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5 ? i
A g o,
o—% & & s NETTLE CREEK
- ‘el e WES e .’1,* 2.
T \ / ‘(P‘“e et TR z ¢
/ N \,\o“s [ o _ I3+ IRISH CREEK MINE
P -
; .y g F] ]
, W Frequency Percentage

£}
i L L J

KILOMETERS

o !'L) i

~

<

o

Figure 3. Parts per million beryllium in stream sediments,
Irish Creek tin mine vicinity, Rockbridge County, Virginia.

PPB FLUORIDE

o < 200
® 200-800
® > 900

R® abandoned mine #1

(Data, R.S.Good)

KILOMETERS

Figure 4. Parts per billion fluoride in stream water in vicinity
of Irish Creck tin mine and Nettle Mountain granite.

Penick and Sweet (1984) noted a previously unrecorded
gold and silvermine (now called the Buck Mountain mine) on
strike with the Nettle Creek sulfide-fluorite occurrence in
Ambherst County. This locality is about 10 miles southwest of
the Irish Creek tin mines. The Buck Mountain mine is within
host rocks similar to those at Irish Creek (Figure 1). Assays
on adit samples from a quartz vein in a shear zone from Buck
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EXPLANATION
Cataclastic zone.
=== Fault.

Geochemical soil and spectrometer traverse.

Irish Creeck mine, Panther Run #1, main
workings, 2 accessible adits and trenches.

Irish Creek mine, Panther Run #2, workings
inaccessible except for pits.

Chilhowee Group: metasediment sand
metavalcanics; phyllite, feldspathic sand-
stone and meta basalt.

- %%

Catoctin metabasalt feeder dikes.

T311 Crossnore Group pluton: Nettle Mountain
fluorite-bearing biotite granite with accessory
florencite.

/N'~.11  Porphyritic leucocratic quartz monzonite

with blue quartz, locally alaskitic; with dis-
seminated, anastomosing, thin mylonite
zones separated by undeformed or slightly
deformed rock.

Poikiloblastic clinopyroxene, hypersthene,
hornblende granulite gneiss; layer hornblede,
clinopyroxene, hypersthene granulite gneiss;
quartzofeldspathic granulite gneiss; char-
nokite facies of Pedlar terrance characterized
by local, thin, anastomosing mylonite zones,
often with little or no displacement.

PPM BERYLLIUM
o <5

® 56
> 6

Figure 6. Parts per million beryllium in soil traverses on
Nettle Mountain and Yankee¢ Horse Ridge.
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Figure 7. Parts per million beryllium in soil traverses in the
vicinity of Irish Creek tin mine, #1 working.

Mountain range from 0.04 to 1.31 ounces/short ton of gold
and from 1.82 to 5.4 ounces/short ton of silver (Appendix II).
The mineralogy of the quartz vein is pyrite, arsenopyrite,
scorodite, fluorite, and gypsum. The writer also found highly
elevated tin values in the soil around the adit (20 to 416 ppm),
but no cassiterite has been identified. Additional anomal-
ously high metal values in the soil are lead (400 to 607 ppm),
beryllium (6.1 ppm), arsenic (12,500 ppm), and silver (2to 5
ppm); fluorine in the soil is 1195 ppm (Appendix IIT). Three
other small precious metal mines or prospects (Jack’s Hill,
Colleen prospect, Ivy Creek, Figure 1) have been identified
by Sweet and Lovett (1985), but there is no data regarding the
history or grade of ore from these mines.

The Irish Creek mine sites and the Yankee Horse Ridge
prospect are both within a 5500 acre tract of private land
owned by Dr. Laurie Landeau of New York. The tract was
formerly owned by Owens-Illinois Company, Forest Prod-
ucts Division, which became the Nekoosa Packaging, Inc. in
the 1980s.

GEOLOGIC SETTING
IRISH CREEK TIN DEPOSITS

The Irish Creck tin mines are located in the central
Virginia portion of the Blue Ridge physiographic and geo-
logic provinces (Figure 1). The mines are located on a small
tributary of Irish Creek (Panther Run on 15-minute topo-
graphic map) that is unnamed on the 1965 edition of the
Montebello 7.5-minute topographic map. The sites are
located on the 7.5-minute Montebello quadrangle (Figures 1
and 2B). The mines were active from 1884 to 1886, 1890 to
1892, and 1918 to 1919 (Ferguson, 1918). However, total
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production has been estimated at only 3200 short tons of ore
with an average grade of 1 percent. This ore produced an
estimated 17 short tons of tin metal (Koschmann and others,
1942). The grade estimate was lowered to 0.49 percent based
on data obtained from drilling by Bethlehem Steel (Adair,
1942; French, 1956). Several exploration companies includ-
ing International Nickel and Billiton Metals did additional
trenching and assaying in the 1970s and 1980s.

Tin occurs at Irish Creek in cassiterite that is formed in
greisenized gray-quartz veins that intrude clinopyroxene-
hypersthene-hornblende granulite gneiss. These regional
host rocks were formerly all grouped within the Pedlar For-
mation (Bloomer and Wemer, 1955) (in this study called
Pedlar complex), but Hudson (1981) recognized mappable
lithologic units locally that included quartz monzonite, and
felsic and mafic granulites. All of these lithologies as well as
Lovingston complex rocks are intruded by younger Late
Precambrian-age granites (NM, WM, RF, Figure 1) and Late
Precambrian- to Cambrian-age Catoctin basalt feeder dikes
and flows (Figure 1). Minerals reported from Irish Creek
include arsenopyrite, pyrite, hematite, pyrrhotite, galena,
galenobismutite, aikinite, beryl, phenakite, scheelite, wolf-
ramite, sphalerite, siderite, apatite, scorodite, parisite, and ti-
tanomagnetite (Glass and others, 1958). Lesure and others
(1963) described the beryllium mineralization associated
with the deposits. Fordham (1978) notes anomalous beryl-
lium values (above three standard deviations) in stream sedi-
ments downstream from the mines and at one other location
inNettle Creek (Figure 3). Hudson (1981) mapped a fluorite-
biotite granite in the vicinity of Fordham’s stream sediment
anomaly and concluded that this granite was the Irish Creek
“tin granite.” Soil geochemistry done for this investigation
indicates elevated beryllium values in the bedrock over both
Hudson’s fluorite-biotite granite and near the tin mines
(Figures 6 and 7).

PETROLOGY AND TECTONICS

A simplified regional geologic map shows the area of in-
vestigation to be within Pedlar complex rocks (Figure 1). The
term Pedlar was established by Bloomer and Werner (1955)
in the mapping of an area that included the Yankee Horse
Ridge-Nettle Mountain-Irish Creek areas. They combined
pre-Grenville-, Grenville-, and post-Grenville-age granites,
granodiorites, syenites, quartz diorites, anorthosites, and
unakite of the Blue Ridge Mountain into the Pedlar Forma-
tion. Bartholomew and others (1981) and Sinha and
Bartholomew (1984) retained the term Pedlar in describing a
large complex tectonic block consisting of a stack of alloch-
thonous plates west of the Rockfish Valley fault (Rockfish
mylonite zone, Figure 1), as Pedlar massif. The Rockfish
Valley fault was first described and defined by Gathright and
others (1977) and Bartholomew (1977) in anarca northeast of
the area of investigation.

Northwest of the Rockfish Valley fault (Rockfish mylo-
nite zone, Figure 1) lithologies are dominantly Grenville-
(1100 m.y.) and pre-Grenville-age (1700 m.y.) massive and
layered charnockites, massive and layered felsic and mafic
granulite gneisses, and leucocratic, quartz monzonites par-

tially reflecting different degrees of deformation. A Gren-
ville age of 1075 m.y. was obtained from zircons extracted
from Pedlar complex charnockite by Pettingill and others
(1984). Mapping of an individual fault may be misleading.
The local scale tectonic style consists of anastomosing faults
which pervade a southeast-dipping, northeast-trending stack
of thrust sheets which appears to form a duplex.

Southeast of the Montebello quadrangle Herz and Force
(1987) used the term *Pedlar massif” as an informal term to
describe rocks northwest of the Rockfish mylonite zone.
Within the Montebello quadrangle, Hudson (1981) dropped
the term Pedlar and mapped four granulite gneiss units:
massive ilmenite-hornblende granulite gneiss, massive clino-
pyroxene-hypersthene hornblende granulite gneiss, poikilob-
lastic ilmenite-homblende granulite gneiss, andlayered granu-
lite gneiss. Within the area of this investigation (Figure 5),
Hudson (1981) mapped most of the bedrock as poikiloblastic
clinopyroxene-hypersthene-hornbende granulite, layered
hornblende-clinopyroxene- hypersthene granulite gneiss with
small amounts of quartzofeldspathic gneiss and a large area
of porphyritic, leucocratic quartz monzonite (Figure 5). The
writer indicates all of these rocks as Pedlar complex (Pc) in
the regional map (Figure 1).

Rocks that occur to the southeast of the Rockfish mylo-
nite ‘zone (Figure 1) are Grenville- (1100 m.y.) and pre-
Grenville-age (1700 m.y.) biotite augen gneiss, granulite
gneiss, minor charnockite, granite, ferrodiorite, anorthosite,
and nelsonite (Herz and Force, 1987; Evans, 1984). These
rocks are dominantly biotite and hornblende-bearing rocks
with minor pyroxene. The rocks are shown informally as
Lovingston complex (Figure 1). The term Lovingston origi-
nated with (Jonas, 1928), was continued by Bloomer and
Wemer (1955), and was retained informally by Herz and
Force (1987) as “Lovingston massif.”

The Rockfish mylonite zone (Figure 1) marks lithologic
differences but its significance is undergoing reevaluation.
The zoneis about 1 to 3 milesin width and contains mylonites
along with rocks less intensely deformed. It is considered by
many workers to be part of a major fault system, the Hay-
esville-Fries-Rockfish Valley fault, extending on strike to the
southwest and northeast. The fault system also extends as
subparallel fractures to the northwest and southeast of the
trace indicated in Figure 1.

The Rockfish mylonite zone (RMZ) has been considered
one of dominantly ductile deformation and was called the
ductile deformation zone (DDZ) by Bartholomew and others
(1981). The assumed Ordovician-age Taconic deformation
of the Rockfish mylonite zone through arc-continent colli-
sion (proto-Atlantic Ocean, Iapetus of Wilson (1966), clos-
ing) is now open to question. Evans (1984) found evidence
of both ductile and brittle deformation in his detailed map-
ping across the RMZ. The Rockfish mylonite zone is consid-
ered the trace of a reactivated hinge zone (Wehr and Glover,
1985; Evans, 1984) marking the uplift and stretching of a
continental margin which developed rift grabens on each
flank in Late Precambrian time. Late Precambrian- to Early
Cambrian-age rift-related faulting occurs along the entire
Blue Ridge geologic province from Alabama to Pennsylvania
(Costello and Hatcher, 1985). The driving force causing’
uplift is widely viewed as a mantle plume convection cell



PUBLICATION 112

(Wehr and Glover, 1985; Seyfert, 1987). Based on stratigra-
phic evidence Fichter and Diecchio (1986) have suggested
630m.y. asthebeginning date forrifting. Odom and Fullager
(1984) believe rift-related events started earlier at 690 m.y.
with felsic intrusions of the Crossnore plutonic-volcanic
suite. The Crossnore group wasoriginally defined to describe
late Precambrian- to Early Cambrian-age igneous rocks in-
cluding the Catoctin, Mount Rogers, and Grandfather Moun-
tain volcanic rocks (basalts and rhyolites) plus the Crossnore,
Beech, Striped Rock, Brown Mountain, and Lansing plutons
of northernmost North Carolina and southwest Virginia. On
stratigraphic, mineralogic, and isotopic-geochronological
grounds, Rankin, 1968a, 1968b; Rankin and others, 1969;
Rankin, 1975, 1976, presented evidence that these rocks con-
stitute a single bimodal suite and an orogenic magmatic suite,
the Crossnore complex. The Crossnore plutonic suite, a sub-
division of the Crossnore complex, is characterized by felsic
members which have mildly to distinctly peralkaline affini-
ties. The Crossnore plutonic-volcanic suite is characterized
by enrichments in niobium, yttrium, thorium, uranium, rare-
carth clements, potassium, and depletions in strontium and
barium (Rankin, 1975). The plutons are fluorite-bearing and
biotite rich granitoid rocks. A few are truly peralkaline, that
is, the sum of Na,O and K,0O exceeds AL,O, on a molecular
basis (Bailey, 1989) and contain small amounts of alkali
pyroxenes (aegirine) and alkali amphiboles (riebeckite)
(Rankin, 1976). Felsic extrusives (rhyolite) are associated
with some of the Crossnore felsic plutons,

In the Blue Ridge province of central Virginia there are
four known small, fluorite-bearing, rare earth-enriched, tho-
rium and uranium-enriched biotite granitoid plutons which
intrude the Pedlar Complex and Lovingston Complex rocks.
Because of their intrusive relationships, their lithology, and
ages, they are called Crossnore plutons in this investigation.
Granitoid Crossnore plutons indicated in Figure 1 are: Nettle
Mountain granite, NM; Mobley Mountain Granite, MM,
Woods Mountain pluton, WM; and Rockfish pluton, RF.
Two of these plutons have been dated as Late Precambrian,
the Nettle Mountain Granite indirectly at 637 m.y. (Hudson
and Dallmeyer, 1982) and the Mobley Mountain Granite at
652m.y. (Brock, 1981). The locations of the plutons and ages
of intrusion are evidence for melting accompanying doming
or uplift prior to, or during, earliest rifting. The other biotite
fluorite-bearing granitoid plutons intrusive into Grenville-
age rocks, the Rockfish (RF, Figure 1) and the Woods Moun-
tain (WM, Figure 1) have been described briefly but not
dated: Woods Mountain by Smith and others (1981); and
Rockfish by Evans (1984). Three of these Crossnore plutons
(MM, RF,and WM) occur southeast of the Rockfishmylonite
zone and the Nettle Mountain granite (NM) occurs to the
northwest (Figure 1).

Within the Montebello quadrangle, Hudson (1981) iden-
tified a small (1900 feet by 600 feet) fluorite-bearing biotite
granite on the east flank of Nettle Mountain, 2.84 miles
southwest of the Irish Creek tin mines (Figure 5). This granite
was described but never formally named by Hudson (1981).
Inthis study, this granite is informally referred to as the Nettle
Mountain granite. Hudson and Dallmeyer (1982) obtained an
age of 637 m.y. (by A*/A%) from muscovite taken from Irish
Creek tin mine greisen samples. They concluded that the

nearby (2.84 miles) Nettle Mountain granite and its associ-
ated aplites are the source of Irish Creek tin mineralization,
even though no rock similar to the Nettle Mountain granite
has been identified at or close to the tin mines. Compared to
the “average granite” (2485 samples from Le Maitre, 1976)
the Nettle Mountain granite shows a depletion in barium and
enrichment of rubidium, yttrium, niobium, uranium, tho-
rium, zirconium, and zinc (Table 1). Rankin (1975) noted en-
richments in niobium, yttrium, thorium, uranium, rare earths,
potassium and depletion of strontium and barium in the
Crossnore plutonic suite. Additionally, the average of three
Nettle Mountain granite samples tends to match the distinc-
tive signature of the average mineralized granite of Stemprok
and Skvor (1974). Their data shows a signature of a high
Si0,, low TiO,, low MgO and CaO, high K O and Na,0, and
enrichment in a number of trace elements including beryl-
lium (Table 1). Further evidence to support the Nettle
Mountain granite, or a very similar pluton as the source of tin
mineralization, is shown by the Rb/Sr value of 5.05 (range
3.61 10 7.48) which places the Nettle Mountain granite within
the lower range of mineralized plutons of various tin districts
when compared to barren granitoid rocks. All other granitoid
bodies fall well below a Rb/Sr ratio of 5.0 (Figure 8).

Other evidence that supports a genetic relationship be-
tween the Nettle Mountain granite and Irish Creek minerali-
zation is Fordham’s (1978) beryllium data from stream
sediments. The stream sediment values for beryllium show
that the only anomalies in the area surveyed are downstream
from the tin mines and from the Nettle Mountain granite
(Figure 3). Elevated geochemical values in soil for beryllium
(this study) over the Nettle Mountain granite strengthens
Fordham’s data (1978) (Figure 6).

A plot of the Nettle Mountain granite on a modified A-
K-F diagram shows that it is close to the Crossnore plutonic-
volcanic group, and that although none of the samples are
truly peralkaline, one sample plots very close to the peralka-
line divide at the base of the diagram (Figure 9). One truly
peralkaline Crossnore granite from Rappahannock County,
northern Virginia Blue Ridge province, is shown in Figure 9
but others are not included (Mount Rogers felsic volcanic
rocks).

Alkalic and peralkaline rocks are well known in their
association with tensional or rifting environments as opposed
toa subduction setting. Early studies by Martin and Piwinski
(1972) on relating the chemistry of rocks to tectonic setting
were noted by Rankin (1975) who observed that the Crossnore
volcanic and plutonic rocks matched rifted areas rather than
subducted settings. Later refinements using discriminant
functions with whole rock chemistry by Maniar and Piccoli
(1989) clearly places the Crossnore plutonic suite within a
rift-related setting (RRG in Figure 10).

As uplift continued and grabens deepened on each flank
of the hinge zone (Rockfish mylonite zone, Figure 1) elon-
gated basins were formed. On the ocean (east) side elongated
basins were filled with turbidite-dominated sediments and
mafic and ultramafic oceanic intrusives shown as Lynchburg
Group, Ashe Formation, and Alligator Back Formation (Figure
1). Lynchburg Group rocks occur in narrow, subparallel
basins both northeast, southwest, and east of, as well as within
the area shown in Figure 1 (Conley, 1985, 1987). Some of the



8 VIRGINIA DIVISION OF MINERAL RESOURCES

Table 1. Whole-rock chemical signature of Nettle Mountain granite compared with average mineralized and average

unmineralized granites.

Average

granite!
Si0,% 71.30
TiO,% 0.31
Total Fe as Fe,0,% 3.03
MgO% 0.71
CaO% 1.84
K, 0% 407
Na 0% 3.68
Rb/Sr 2.76
Rb/Ba 033
U ppm 39
Th ppm 20.0
Zr ppm 175.0
Nb ppm 20.0
Be ppm 3.0
Lippm 40.0
Sn ppm 3.0
Rare earths ppm 41.0

Y

Nettle Mountain Average of
granite? mineralized granites?
74.5 73.02
0.08 0.21
248 227
0.11 0.52
0.78 1.24
492 4.57
4.76 3.28
5.05 high
2.18 high
1.7 high
241 high
391.0 high
157.0 high
(anomalous, in soil over high
granite, up to 14.5)
(anomalous, in soil over high
granite, up to 67)
(anomalous, in soil over high
granite, up to 16-19) variable
>15-20
179.0 high

Y,Nd, Ce

!Average granite, whole-rock analyses of major element oxides from 2485 samples (Le Maitre, 1976); trace element average from

Turekian (1977), in Rose and others (1979).

*Average of threc whole-rock analyses of fluorite-biotite granite which crops out on Nettle Mountain (Hudson, 1981) and is
informally called Nettle Mountain granite in this investigation. This granite is 2.8 miles from the Irish Creek tin mine and is thought
to be the “tin granite.” Soil data on Be, Li, and Sn over the granite are from this study.

*Average for specialized granitoid host rocks in mineralized areas Stemprok and Skvor (1974) in Taylor (1979).

mafic rocks within Lynchburg Group rocks are greenstones
and may represent partial ophiolite sequences (Conley, 1985,
1987). Ultramafic rocks (Figure 1) now altered to soapstone
also occur within the Lynchburg Group. In places close to hot
spots within the Lynchburg-Ashe basins, warm and hot
metal-rich and silica-rich brines deposited the syngenetic,
stratiform, massive sulfides of iron, copper, zinc, and lead of
the Gossan Lead of southwest Virginia (Gair and Slack,
1984), and also the stratabound barite, manganese oxide, and
banded iron formations of the western Piedmont of Virginia
(Sweet and others, 1989). The Faber lead-zinc mine (number
6,Figure 1) and the Ivy Creek gold prospect (number 7, figure
1) are excellent examples of rift-related mineralization within
the Lynchburg Group rocks. Saline brines are known to have
an important role in the mylonitization process (Kirby and
others, 1989). Saline brines generated in Late Precambrian-
age Lynchburg rift basins may have augmented the faulting
process. With or without brines, however, the Late Precam-
brian-age rift faults are believed to be favored sites for
repeated faulting through Paleozoic and perhaps even Meso-
zoic time. Metamorphism altered but did not completely
obliterate these paleofractures. Mesozoic-age rift basins of

the Triassic and Jurassic (Figure 1) follow the trend of Late
Precambrian-age rifts. It is not clear whether these are
reactivated older faults or a combination of newer faults with
older ones.

On the landward (west) side of the hinge line fluvial con-
glomerates and arkoses were deposited in narrow elongated
rift basins coeval or partially coeval with Late Precambrian-
age Lynchburg deposition as the Mechum River Formation
(Figure 1). Otherrift-related deposits coeval with the Mechum
River, butnot shown, are the Swift Run and Fauquier Forma-
tions. Some of the Mechum River deposits are subaerial
conglomerates with some shallow-water clastics.

As rifting continued from Late Precambrian time into
earliest Cambrian time, rift-related fractures directed basaltic
flows which follow the northeast trend of the Mechum River-
Lynchburg basins. Basalts (now greenstones) directly over-
lie the rift graben clastics (Catoctin Formation, Figure 1) and
have a chemical signature of continental margin rifting, not
subduction (Mose and others, 1985; Badgerand Sinha, 1988).
The Catoctin Formation also contains some minor sedimen-
tary and volcaniclastic beds. Catoctin feeder dikes are shown
in Figure 2.
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Figure 8. Whole-rock Rb/Sr ratios for Blue Ridge province granitoid plutons from Virginia compared to granitoid plutons from
selected tin districts of the world. Sources listed in Appendix 1.
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lower Hampton Formations (shown as Chilhowee, Figure 1).
Rifting is indicated by thick alluvial fan sediments, basalts,
abundant lithic clasts, and the feldspathic character of the
sandstones in the lower and middle Unicoi. The overlying
upper Unicoi, quartzose sandstones, represents the incipient
phase of passive margin sedimentation. Stratabound iron,
manganese, and iron-manganese deposits were deposited
within the sediments of the Chilhowee Group (Antietam,
Harpers, and Weverton Formations) rocks and the overlying
Cambrian carbonates and shales of the Shady and Rome
Formations (Figure 1). A regional treatment of current think-
ing on Blue Ridge rifting and tectonics can be found in Glover
(1989). Conley (1987) has suggested that a subduction/
obduction event may have also occurred in Late Precambrian
time in addition to rifting,

Although the evidence for Late Precambrian-age rifting
is substantial, any interpretation must be tempered with the
realization that the entire Blue Ridge geologic province is
tectonically rootless. Seismic dataindicates continuous hori-
zontal reflectors at 3.7 to 5 mi beneath the Blue Ridge and
western Piedmont province. These reflectors are interpreted
as being flat-lying lower Paleozoic-age strata (Clark and
others, 1978; Cook and others, 1979; Harris and others, 1982;
Glover and others, 1982; Wehr and Glover, 1985). The
tectonic style is now seen by many workers to be affected by
right lateral movement in late Paleozoic-time.

The Nettle Mountain Granite is one of four Crossnore
plutons indicated on the regional geologic map (Figure 1).
Hudson (1981) considered the Nettle Mountain granite to be
the Irish Creek tin granite, but no granite was identified at or
near the mine, although Ferguson (1918) indicates ten other
“veins” up to more than a mile away from Irish Creek #1 and
#2 workings. This lack of a source granite may be because it
is not prominently exposed or it may be because the Irish
Creek tin mineralization and the Nettle Mountain granite lie
within a very thin, southeast dipping thrust sheet. Hudson
(1981) indicates an extensive cataclastic zone (Figure 2) and
the writer noted parallel shearing on Yankee Horse Ridge.
Evidence for the thinness of a Pedlar complex thrust sheet is
the comment of Ferguson (1918) who noted “purple slates”
at the #2 underground tin workings (now inaccessible). This
observation would tend to support an interpretation of Pedlar
complex granulite gneiss containing greisen lying over
younger Catoctin or Chilhowee rocks (Figure 2). Herz and
others (1981) and Brock and others (1987) postulated that the
Nettle Mountain granite is a rootless roof pendant of the
Mobley Mountain Granite (Brock, 1981).

The Nettle Mountain granite according to these workers
is a detached cupola of the Mobley Mountain granite, a
fluorite-bearing biotite granite 14.3 miles to the southeast of
Nettle Mountain. The roof pendant is thought to have been
transported during Paleozoic-aged (probably Taconic) thrust-
ing to the northwest. The geologic age determined for the
Mobley Mountain Granite, 652 m.y., by Brock (1981) is
marginally compatible with Hudson and Dallmeyer’s (1982)
date for Irish Creek greisen mineralization, although the 637
m.y. age is only an inferred date for the Nettle Mountain
granite. The overall mineralogic and whole-rock chemical
evidence connecting the two granitesis very weak and cannot
entirely be explained by enrichment of volatiles. Table 2

shows that the Mobley Mountain granite does not meet any of
the criteria for mineralized granites discussed earlier and
shown in Table 1. Furthermore, the Mobley Mountain
granite does not show a high Rb/Sr value (Figure 8). Brock
(1981) and Brock and others (1987) underplay the chemical
and mineralogic discrepancy by postulating upper mantle
melting (possibly of a lherzolite) and fractional crystalliza-
tion leading to a volatile-enriched pluton cupola. The frac-
tional crystallization for Brock’s model (1981) was derived
from computer modeling (XLFRAC, mass balance simula-
tion). Itis certainly reasonable to envision dismemberment
of plutons in this allochthonous thrust belt setting, but it
should be noted that the data for the Rockfish pluton plots
closer to the Nettle Mountain granite than the Mobley Moun-
tain granite on a modified A-K-F diagram (Figure 9).

Table 2. Average major chemical and mineral differences
between Nettle Mountain granite and Mobley Mountain
granite.

Nettle Mountain Mobley Mountain
granite! granite?
Si0,% 74.5 67.6
TiO,% 0.08 047
Total Fe as Fe,0,% 2.48 5.61
MgO% 0.11 0.36
CaO% 0.78 1.14
Rb ppm 437.0 97.0
Srppm 82.0 190.0
Y ppm 179.0 22.0
U ppm 7.7 0.57
Th ppm 24.1 72
Rb/Sr 5.05 0.59
Quartz (modal %)  27.5 248
Albite (modal %) 5.2 12.1
Epidote (modal %) - 54

INettle Mountain granite data from Hudson (1981), mean of
three analyses.

ZMobley Mountain granite data from Brock (1981), mean of
14 analyses.

THORIUM AND URANIUM

Anomalous thorium values may have a potential use in
the Blue Ridge province as arapid guide to poorly exposed or
buried mineralized pegmatite or pegmatoid zones, mineral-
ized cataclastic zones, tin-bearing greisen, and surface ex-
pressions of uranium at depth. Late Precambrian-age,
Crossnore-type plutons (fluorite-bearing biotite granitoid
rocks rich in thorium and rare-carth elements) have been
proposed as prime exploration targets for uranium in igne-
ous-metamorphic rock terranes (Rogers and others, 1978).
Uranium mineralization is associated with tin deposits in
England and Europe in geologic settings similar to Irish
Creek. Mineralization is associated with granites containing
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more than 5 ppm uranium (Rich and others, 1977). In the
eastern United States, exploration for uranium is difficult and
misleading because surface leaching, transportation, and re-
deposition can easily remove all direct indications of unoxi-
dized uranium mineralization at depth, or leave only shallow
concentrations of secondary uranium minerals at the surface.

Thorium, because of similar jonic radius and valence
charge compared to uranium and rare-earth elements, accom-
panies these elements in magma evolution. Crossnore-type
granitoid plutons are enriched in these elements as well asru-
bidium, beryllium, lithium, tungsten, tantalum, and tin, and
thus might be considered rift-related because of the known
association of alkalic/peralkalic felsic rocks in tensional set-
tings. Upper mantle plume melting during uplift preceding
rifting is the most probable source.

Uranium (U**) separates from thorium (Th**) as it oxi-
dizes to U*Sand forms more soluble and mobile complexes
during the weathering cycle in humid climates. The Th**
remains unoxidized in rock and soil as a stable compound.
One example in Virginia where the surface radioactivity is
not superficial, or due to disseminated thorium minerals, is
the Marline Uranium Corporation’s Swanson ore body in
Pittsylvania County. This deposit consists of an estimated
30-million pounds of U,Q,in coffinite-pitchblende-uraninite
ore averaging 0.20 percent U,O, (Chenowith, 1983). The
mineralized zone is contained in a sheared late Precambrian-
age augen gneiss in contact with a younger granite along a
border faultof the Danville Triassic basin. This deposit might
represent mineralization along a reactivated late Precam-
brian-age rift fault.

Deformation of accessory uranium and thorium-bearing
minerals is known to markedly enhance radioactivity in my-
lonite zones because of redistribution of the oxidized and
soluble U*¢ cation and radon gas movement within more
permeable cataclastic textures. In studying sources of radon
enrichment in Virginia and Pennsylvania, Gunderson and
Gates (1988) noted that uranium content could be positively
correlated with shear strain as determined by the angle be-
tween C and S bands. In the Late Precambrian-age Reading
Prong allochthon of Pennsylvania, uranium was found hosted
in allanite, titanite, and monazite in unsheared rocks, but was
redistributed in association with hematite in the foliation of
mylonite at levels of 25 to 50 ppm uranium (Gunderson and
Gates, 1988).

Allanite and chevkinite/perrierite are common in small
amounts in the Blue Ridge province of Virginia (Mitchell,
1966a). Thorium always substitutes in varying small amounts
for cerium in allanite (Ce, Ca, Y) (Al, Fe*?), (§i0,), (OH),
perrierite (Ca,Ce, Th),(Mg,Fe*?),(Ti,Fe**),Si,0,,, monoclinic
perrierite (chevkinite), florencite (Ce,AL)(PO,),(OH),, and
bastnaesite (Ce,La) (CO,)(F,OH), all of which are known to
occur in the Crossnore plutons and the Robertson River
plutons and pegmatites (Hudson, 1981; Brock, 1981; Lukert
and Halladay, 1980). Complications in interpretation could
occur because allanite is also found in association with peg-
matoid intrusion zones near older charnockites. Allanite and
chevkinite may be related to late Precambrian-age Crossnore
pegmatoids. Hudson (1981) notes a radioactivity anomaly
associated with dark-gray quartz veins containing iron oxides
(200 ppm thorium, 7 ppm uranium) about 0.6 mile from the

fluorite-biotite granite along Nettle Mountain. Whole- rock
analyses by Hudson on the Nettle Mountain granite showed
arange of 13.5 ppm to 17.9 ppm for thorium and an average
of 7ppm for uranium. His mapping indicates aplites and gre-
isen in the peripheral zone of the fluorite-biotite granite, one
of which outcrops on the west slope of Yankee Horse Ridge.
Hudson noted thorium enrichment along a cataclastic zone on
Grapevine Ridge in the southwest corner of the Montebello
quadrangle (Figure 1) and reported thorium values of 194
ppm and only 3.4 ppm uranium. A southemn projection of
Hudson’s mapping of a radioactive cataclastic zone was
checked by the writer, Gamma-ray spectrometry indicated
thorium and uranium values similar to Hudson’s data (Figure
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Figure 11. Gamma-ray spectrometer and geochemical trav-
erse across a projection of the cataclastic zone mapped by
Hudson (1981) on Grapevine Ridge, Montebello 7.5-minute
quadrangle, Rockbridge County, Virginia.
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Ames (1981) noted thorium enrichments of 275 ppm and
15.3 ppm uranium in the felsic mylonites of the Rockfish
mylonite zone southeast of the Irish Creek mines (Figure 1).
This area is northeast of the Montebello quadrangle. Values
of 50,000 ppm thorium and 4800 ppm uranium were reported
in saprolites of shear zones with enrichments of tin, tungsten,
lanthanum, scandium, titanium, vanadium, zinc, and yttrium
in the Lovingston Formation southwest of Charlottesville
(Baillieul and Daddazio, 1982). The radioactivity in this
cataclastic zone is generated primarily from monazite, ura-
nothorite, and thorogummite. A strong north-northeast trend-
ing thorium and uranium anomaly is indicated by stream
sediments in the National Uranium Resources Evaluation
(NURE) survey (Herz, 1982). This anomaly is south of the
Montebello quadrangle in the adjacent Forks of Buffalo
quadrangle. A low-level thorium enrichment is noted (Th/U
greater than4.0, 13.4 ppm thorium, 3.3 ppm uranium: Appen-
dix VI) at Irish Creck tin mine (Figure 12) and in an area
peripheral to the Nettle Mountain granite (61 ppm thorium,
7.5 ppm uranium: Appendix IX; 44.7 ppm thorium, 7 ppm
uranium: Appendix X; Figure 13).
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Figure 12. Soil Th/U ratios for the gamma spectrometer
traverse across Irish Creek tin mine, #1 working, Montebello
7.5-minute quadrangle, Rockbridge County.

RESULTS OF INVESTIGATION
GEOCHEMICAL SOIL TRAVERSES

A geochemical soil traverse with 100-foot intervals was
designed to cross the fluorite-biotite granite on Nettle Moun-
tain (described by Hudson, 1981) and intersect a small
greisen and aplite area on Yankee Horse Ridge. The initial
reconnaissance soil traverse clearly indicates a tin, lead, and
zinc anomaly (Figures 14, 16, 18, and 20). Reference soil
traverses were made over mineralized and contaminated soil

Nettie Mountain granite
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Figure 13. Soil Th/U ratios for the gamma spectrometer
traverse across Nettle Mountain and Yankee Horse Ridge,
Montebello 7.5-minute quadrangle, Rockbridge County.
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Figure 14. Parts per million tin in soil traverses on Nettle
Mountain and Yankee Horse Ridge.

at Irish Creck mine (traverse A-A’ in Figures 15,17, and 19)
and apparently uncontaminated and unmineralized soil (trav-
erse B-B’, figures 14, 16, and 18). Traverse B-B’ is 250 feet
northeast of the mine and parallel to the traverse across the
mine adits. The values are listed in Appendices VI, VII, VIII,
and IX. Background values were computed from geochemi-
cal soil values from traverse B. Additional geochemical soil
data from the literature helpful for establishing or evaluating
anomalies for tin, lead, and zinc as well as for other metals
analyzed in this investigation are given in Appendix V.

A topographic-geochemical profile of the southeast por-
tion of reconnaissance traverse C-C’ across Nettle Mountain
(Figure 20) shows elevated tin, lead, and zinc values. In the
other traverses (Figures 14, 16, and 18) detailed sampling at
10-foot intervals along three, 200-foot sample traverses is
indicated within in the large rectangle representing an en-
larged view of anomaly Y on Yankee Horse Ridge. Addi-
tional short north-south and east-west traverses with 100-foot
intervals, D, E, and F have metal values listed in Appendices
X, X1, and X1I.
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Figure 15. Parts per million tin in soil traverses at and near
Irish Creek tin mine, #1 working.
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Figure 16. Parts per million lead in soil traverses on Nettle
Mountain and Yankee Horse Ridge.

| The Yankee Horse Ridge anomaly shows elevated val-
ues of rubidium (Figure 21), arsenic (Figure 23), gold (Figure
25), and silver. A small thorium anomaly with a maximum
value of 61 ppm thorium (Figure 13) is also present. Metal
values from samples along the traverses are shown in Appen-
dices VIII, IX, X, X1, and XIL

Comparison of the geochemical soil anomalies at Yan-
kee Horse Ridge with the reference traverse A at Irish Creek
tin mine show that there are elevated values of tin, lead,
beryllium, lithium, zinc, copper, fluorine (Figure 27), rubid-
ium (Figure 22), and silver very close to the mine adits (but
not on mine dump soil). No soil samples were taken for gold
analysis along the Irish Creek mine traverse. Soil values with
elevated beryllium, tin, lead, lithium, zinc, and arsenic were
found over the Nettle Mountain granite in traverse C. Some
tungsten values (apparently anomalous) are also present (Fig-
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Figure 17. Parts per million lead in soil in the vicinity of the
Irish Creek tin mine, #1 working.
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Figure 18. Parts per million zinc in soil traverses on Nettle
Mountain and Yankee Horse Ridge.

ures 7, 15, 17, 29, 19, and 24). Traverses showing fluorine,
lithium, and copper are shown in Figures 26, 28, and 30 with
reference traverses in Figures 26, 28, and 31. In the detailed
traverse (10 foot intervals) on Yankee Horse Ridge anoma-
lous iron, manganese, nickel, and cobalt values are also noted
associated with a Catoctin greenstone feeder dike.

Both gold and silver are identified in anomalous amounts
in the soil at levels indicating the presence of gold minerali-
zation in the bedrock. This non-visible mineralization is
confirmed by assays of the bedrock. The initial precious
metal anomaly was suggested from the routine use of atomic
absorption for silver alone. Silver has been used asa “crude”
pathfinder element for precious metals as well as base-metal
mineralization. Silver has been demonstrated to be a useful,
rapid, and inexpensive discriminator element even when
used with routine geochemical analyses with hydrochloric
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Figure 19. Parts per million zinc in soil in the vicinity of Irish
Creek tin mine, #1 working.
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Figure 20. Geochemical soil profile for tin, lead, and zinc
southeastern portion of C, location Y (Figure 2A), Yankee
Horxse Ridge.

acid sample digestion. Enough silver remains in solution
even though silver in large amounts is precipitated by chlo-
ride, to provide low level silver anomalies with a detection
limit of 1 ppm silver.

At Yankee Horse Ridge and Nettle Mountain only two
soil samples on traverses C, D, E, and F (Figures 2A, 5) show
detectable (more than detection 1 ppm limit) silver. Sample
3-W-1 (traverse F, Appendix I) contains 5 ppm silver. One
other sample contains detectable silver (1 ppm) (BL on
traverse YC, detailed sampling, Appendix XII). All other

Feet

Figure 21. Parts per million rubidium in soil traverses on
Nettle Mountain and Yankee Horse Ridge.
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Figure 22. Parts per million rubidium in soil traverses in the
vicinity of Irish Creck tin mine, #1 working.
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Figure 23. Parts per million arsenic in soil traverses on Nettle

Mountain and Yankee Horse Ridge.
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Figure 24. Parts per million arsenic in soil traverses in the
vicinity of Irish Creck tin mine, #1 working.
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Figure 25. Parts per million gold in soil at in-lead-zinc geo-
chemical anomaly Y (Figure 2a), location Y (Figure 5),
Yankee Horse Ridge.

o, MNellle Mountain granile PPM FLUORINE

0 1000
Feet
Figure 26. Parts per million fluoride in soil traverses on
Nettle Mountain and Yankee Horse Ridge.
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Figure 27. Parts per million fluoride in soil traverses in the
vicinity of Irish Creek tin mine, #1 working.
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Figure 28. Parts per million lithium in soil traverses in the
vicinity of Irish Creek tin mine, #1 working.

routine soil samples contain no detectable silver except two
samples on the reference traverse across Irish Creek (traverse
A, Appendix VI). These values are 13 and 1 ppm silveratthe
Trish Creek adit and 100 feet southeast of the adit. It is of
interest tonote that four soil samples from the Buck Mountain
mine (Figure 1), ten miles southwest of the Irish Creck mine,
contain from 2 to 5 ppm silver (Appendix IIT). According to
Smithand Carson (1977) the range of silver in unmineralized
soils is 0.03 t0 0.09 ppm. Even in mineralized soils, silver
seldom exceeds 1 ppm, although the humic layers in miner-
alized areas may in exceptional cases reach levels of 210 5
ppm (Shacklette and Boerngen, 1984).

Because of the clearly anomalous silver values in the
soil, additional soil samples were taken on a separate grid.
These samples were analyzed for gold and silver by fire assay
(Figure 25). Three soil samples contained 0.326 ppm, 0.470
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Figure 29. Parts per million lithium in soil traverses on Nettle
Mountain and Yankee Horse Ridge.
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Figure 30. Parts per million copper in soil traverses on Nettle
Mountain and Yankee Horse Ridge.

ppm, and 0.512 ppm gold. All of these values unambiguounsly
indicate gold mineralization in underlying or nearby bedrock.
Anomalous gold is indicated in 14 out of 39 soil samples
using 0.01 ppm as the threshold (Appendix XIIT). The results
indicate typical patchy anomalous values consistent with
gold mineralization elsewhere. In soils over one of the largest
gold mines in Virginia’s gold/pyrite belt, the Tellurium mine,
anomalous soil values range from 0.02 t0 0.42 ppm gold with
all background samples below 0.02 ppm (Good and others,
1977). In abandoned South Carolina gold mines, Kinkel and
LeSure (1968) found soil values to range from 0.02 to (.52
ppm gold. Rose and others (1979) list 0.002 ppm gold as
background for soils and Kabata-Pendias and Pendias (1984)
give 0.001 to0 0.002 ppm gold as a background range for all
unmineralized soils regardless of climate. Lakin and others
(1974) studied gold distribution in soil profiles. They show
that depending on the origin of the soil and its weathering

PPM COPPER

Feet

Figure 31. Parts per million copper in soil traverses in the
vicinity of Irish Creek tin mine, #1 working.

stage, gold can be present in soil particulates or in cobbles and
pebbles. Gold is most often enriched in the humus layers
because it can act as areductant and precipitation medium for
mobile forms of gold. In mineralized areas Lakin and others
(1974) found forest mull (a special form of humus) to contain
0.05 to 5 ppm gold.

TRENCHING AND DRILLING ON THE YANKEE
HORSE RIDGE ANOMALY

The soil anomaly on Yankee Horse Ridge was exposed
by wenching. The rocks and soil in the trench revealed
massive, sheared, and mylonitized and hydrothermally al-
tered leucocratic, quartz monzonite and alaskite bedrock
beneath a shallow soil cover (Figures 5, 20, 29, 32, and 33).
In unsheared quartz monzonite the quartz is bluish gray and
thin sections indicate that perthitic K-feldspar is abundant.
The mylonite is a light gray to greenish gray, schistose,
aphanitic rock with 1 to 3 millimeters elongated smoky gray,
quartz porphyroclasts. Much of the uncrushed rock shows
anastomosing, paper-thin, limonite or hematite-filled frac-
tures in thin section. Mylonitic material contains quartz with
mortar texture and Boehm lamellae, as well as sericite and
chlorite leaves between the quartz clasts. Unweathered
mylonitic bedrock is shown in Figure 32.

A few samples contained visible hematitic vogs with dis-
seminated pyrite. Other rock fragments contained isolated
limonitic and hematitic boxworks from 2 to 4 centimeters in
diameter. Boxwork casts suggest both tetrahedra and cubes.
Several fragments show traces of powdery yellow and yel-
low-green films. X-ray diffraction indicates jarosite and
possibly beudantite, a lead arsenate mineral.

No definite greisen zone could be observed in the exca-
vations. The exposed area indicated sparse, scattered miner-
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Figure 32. Freshly bulldozed bedrock at geochemical soil
anomaly Y (Figure 2a), location Y (Figure 5), Yankee Horse
Ridge, showing sparsely mineralized, sheared leucoquart-
zmonzonite. Selected loose grab samples showed gold as-
says up to 0.17 ounces of gold/per short ton.

Figure 33. Freshly bulldozed bedrock at geochemical soil
anomaly Y in Figure 2a, location Y (Figure 5), Yankee Horse
Ridge, showing sparsely mineralized leucoquartzmonzonite.
Selected grab samples showed gold assays up to 0.17 ounces
of gold/per short ton but samples were not in place.

alization, not an obvious vein or dike. White aplite with
paper-thin, hematite-filled fractures occurs in the vicinity of
the geochemical anomaly, away from the area of trenching
and about 500 feet down slope to the north of the trenched
area.

Three mineralized grab samples were assayed from the
trenched geochemical soil anomaly (Figures 20 and 32). The
assays show marginal to ore grade values of 0.03, 0.05, and
0.17 ounces/long ton gold (assays 1, 2, and 10; Appendix
X1V) and up to 8.72 ounces/long ton silver (assay 1, Appen-
dix XIV). A fourth mineralized bedrock sample from anom-
aly Y showed 0.002 ounces/long ton gold (assay 12, Appen-
dix XIV).

ORIGIN OF MINERALIZATION AND EXPLORATION
TARGETS

TIN

Current geologic evidence supports the association of tin
mineralization with Late Precambrian- to Early Cambrian-
age continental margin rifting as discussed earlier. The
identification of rift-generated felsic plutons as a potential
source for tin and tungsten should focus on any granitoid rock
with a specialized chemical signature, especially fluorite-
bearing granites with biotite more abundant than muscovite.

Lithochemical or whole-rock chemical signatures of
potential mineral-rich granitoid source rocks should show
low TiO,, low total Fe as Fe,O,, low MgO, low Ca0, high
K,O, and enrichments in rubidium, fluorine, lithium, tin,
beryllium, tungsten, and molybdenum with or without ele-
vated values of niobium, tantalum, caesium, uranium the,
rare earths, and boron. Specific element values based on a
wide variety of mineralized areas of the world are summa-
rizedin Column 2 of Table 1. Additionally,element pairs can
be used. A specialized signature would show low ratios for
K/Rb, Mg/Li, and Ba/Rb.

Hudson (1981) and Rankin (1975, 1976) did not include
chemical datafortin, beryllium, or lithium, thus an evaluation
of whole rock signature for the Irish Creck area is limited, If
possible, chemical analyses in a tin exploration program
should include tin, lithium, strontium, barium, selected rare
earths, thorium, and uranium. Because of the limitations on
chemical data for the Irish Creek area, aRb/Sr value of greater
than 5.0 is tentatively suggested as a simple criterion for
identifying a potentially mineralized pluton. The basis for
this value is summarized in Figure 8. Where complete chemi-
cal data is available, several chemical elements can be com-
bined in a discriminant formula. Govett (1983) found one of
the most useful to be: Rb?x Li/K x Mg x Sr with resultant
discriminant numbers above 500 indicating a pluton with fa-
vorable mineralization. This figure was based on computa-
tion from known mineralized and apparently barren rocks.

The evaluation of areas containing plutons with a special
chemical signature and exploration in areas without chemical
analyses for granites, can be focused on areas surrounding
stream sediment sample stations with values of more than 6
ppm beryllium. Tin may or may not be anomalous in the
sediment depending on the drainage. Values of tin in soil
above 20 ppm should be considered an indication of miner-
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Figure 32. Freshly bulldozed bedrock at geochemical soil
anomaly Y (Figure 2a), location Y (Figure 5), Yankee Horse
Ridge, showing sparscly mineralized, sheared leucoquart-
zmonzonite. Selected loose grab samples showed gold as-
says up to 0.17 ounces of gold/per short ton.

Figure 33. Freshly bulldozed bedrock at geochemical soil
anomaly Y in Figure 2a, location Y (Figure 5), Yankee Horse
Ridge, showing sparsely mineralized leucoquartzmonzonite.
Selected grab samples showed gold assays up to 0.17 ounces
of gold/per short ton but samples were not in place.

alization, not an obvious vein or dike. White aplite with
paper-thin, hematite-filled fractures occurs in the vicinity of
the geochemical anomaly, away from the area of trenching
and about 500 feet down slope to the north of the trenched
area.

Three mineralized grab samples were assayed from the
trenched geochemical soil anomaly (Figures 20 and 32). The
assays show marginal to ore grade values of 0.03, 0.05, and
0.17 ounces/long ton gold (assays 1, 2, and 10; Appendix
XIV) and up to 8.72 ounces/long ton silver (assay 1, Appen-
dix XIV). A fourth mineralized bedrock sample from anom-
aly Y showed 0.002 ounces/long ton gold (assay 12, Appen-
dix XIV).

ORIGIN OF MINERALIZATION AND EXPLORATION
TARGETS

TIN

Current geologic evidence supports the association of tin
mineralization with Late Precambrian- to Early Cambrian-
age continental margin rifting as discussed earlier. The
identification of rift-generated felsic plutons as a potential
source for tin and tungsten should focus on any granitoid rock
with a specialized chemical signature, especially fluorite-
bearing granites with biotite more abundant than muscovite.

Lithochemical or whole-rock chemical signatures of
potential mineral-rich granitoid source rocks should show
low TiO,, low total Fe as Fe,0,, low MgO, low Ca0, high
K,O, and enrichments in rubidium, fluorine, lithium, tin,
beryllium, tungsten, and molybdenum with or without ele-
vated values of niobium, tantalum, caesium, uranium the,
rare earths, and boron. Specific element values based on a
wide variety of mineralized areas of the world are summa-
rized in Column 2 of Table 1. Additionally, element pairs can
be used. A specialized signature would show low ratios for
K/Rb, Mg/Li, and Ba/Rb.

Hudson (1981) and Rankin (1975, 1976) did not include
chemical data for tin, beryllium, or lithium, thus an evaluation
of whole rock signature for the Irish Creck area is limited. If
possible, chemical analyses in a tin exploration program
should include tin, lithium, strontium, barium, selected rare
earths, thorium, and uranium. Because of the limitations on
chemical data for the Irish Creck area, aRb/Sr value of greater
than 5.0 is tentatively suggested as a simple criterion for
identifying a potentially mineralized pluton. The basis for
this value is summarized in Figure 8. Where complete chemi-
cal data is available, several chemical clements can be com-
bined in a discriminant formula. Govett (1983) found one of
the most useful to be: Rb?x Li/K x Mg x Sr with resultant
discriminant numbers above 500 indicating a pluton with fa-
vorable mineralization. This figure was based on computa-
tion from known mineralized and apparently barren rocks.

The evaluation of areas containing plutons with a special
chemical signature and exploration in areas without chemical
analyses for granites, can be focused on areas surrounding
stream sediment sample stations with values of more than 6
ppm beryllium. Tin may or may not be anomalous in the
sediment depending on the drainage. Values of tin in soil
above 20 ppm should be considered an indication of miner-
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alization. Northwest-southeast cross-striike reconnaissance
traverses can be followed by grids in anomalous areas.

GOLD

The origin of the gold in the Blue Ridge province is less
clear than for tin. At the Irish Creek mines, gold occurs with
arsenopyrite in the tin greisens and quartz veins that are close
to a cataclastic zone. The extent of the gold mineralization is
unknown. Ten miles southwest of Irish Creek, in rocks
similar to those at Irish Creek, gold and silver occur in
amounts large enough to have been mined in a small opera-
tion at Buck Mountain. The precious metals occur in quartz
veinsin association with arsenic minerals that are confined to
anarrow shear zone. Inbetween these two occurrences, gold
was identified at Yankee Horse Ridge in sheared bedrock in
a splay from a mylonite zone that is close (800 feet) to the
probable tin granite at Nettle Mountain. The Rockfish
mylonite zone shown in Figure 1 is believed to be continuous
to the southwest and joins with the Fries fault zone. AtBrush
Creek, Montgomery County, Virginia, gold occurs within
mylonitized metavolcanic rocks and metasediments (Pilot
gneiss and Little River gneiss) of the Fries fault (Driscoll,
1989). Detailed laboratory examination of Brush Creck
samples from within the Fries mylonite zone showed that the
gold is epithermal and occurs in irregular and discontinuous
quartz veins. The epithermal quartz vein has a distinctly
different inclusion signature from, and truncates, mylonitic
quartz. Driscoll concluded that the Brush Creek gold deposits
were controlled by brittle fracture tectonics and were there-
fore probably related to a tectonic event sometime after late
Mississippian time (latest mylonitization associated with the
Fries fault).

Figure 34. Microphotograph of a sample of cataclastic leu-
coquartzmonzonite under cross-polarized light at 20x show-
ing hematite-filled fractures with traces of pyrite. From
bedrock at anomaly Y (Figure 2A), location G (Figure 5),
Yankee Horse Ridge.

AtYankee Horse Ridge the precious metal anomalies are
associated with very sparse mineralization within cataclas-

tized, felsic, quartz monzonite (alaskite). Geochemical
anomalies are also spatially associated with nearby rhyodacite
dikes (Figure 35). The dikes are the aplites of Hudson (1981)
who considered them to be peripherally associated with the
Nettle Mountain granite which intrudes mafic granulite, not
quartz monzonite. The emplacement of Late Precambrian-
age felsic plutons like the Nettle Mountain granite is consid-
ered to be rift-related and therefore close to subparallel, high-
angle rift faults. These rift faults would later be reactivated
and become low-angle mylonite zones in Paleozoic time.
Any felsic pluton of Crossnore affinity (mantle plume driven)
and its associated dike swarms and paleo-hot springs would
necessarily be contained in or close to cataclastic zones. Itis
also possible, but less likely, that metal-rich brines and hot
springs were active along the rift fractures themselves with-
out coming from a near surface felsic pluton. The metal-rich
brines would later be remobilized during Paleozoic-age cata-
clastic events. Gold is now known to be much more mobile
than previously thought so that caution must be shown in
genetic interpretations.

®

Figure 35. Microphotograph of a sample from the rhyodacite
dike under cross-polarized light at 20x showing radiate
structure which may be a devitrification spherulite. From
felsite outcrop 150 feet from anomaly Y (Figure 2A).

Hudson and Dallmeyer (1982) might be incorrectin their
assumption that the date of 634 to 637 m.y. for the mica from
Irish Creek greisen is coeval with the Nettle Mountain granite
because the Nettle Mountain material was never dated di-
rectly and does not occur, or at least has not been observed,
at the Irish Creek mines. There may be multiple intrusions of
different ages at the Yankee Horse Ridge-Nettle Mountain
locality.

During this investigation, the writer noted exposures of
a hornblende granite in the stream bed of Nettle Creek
between the area mapped as biotite granite and the greisen
aplite on Yankee Horse Ridge. The hornblende granite in the
Nettle Creek stream bed contains xenoliths, up to three feet in
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alization. Northwest-southeast cross-striike reconnaissance
traverses can be followed by grids in anomalous areas.

GOLD

The origin of the gold in the Blue Ridge province is less
clear than for tin. At the Irish Creek mines, gold occurs with
arsenopyrite in the tin greisens and quartz veins that are close
to a cataclastic zone. The extent of the gold mineralization is
unknown. Ten miles southwest of Irish Creek, in rocks
similar to those at Irish Creek, gold and silver occur in
amounts large enough to have been mined in a small opera-
tion at Buck Mountain. The precious metals occur in quartz
veins in association with arsenic minerals that are confined to
anarrow shear zone. Inbetween these two occurrences, gold
was identified at Yankee Horse Ridge in sheared bedrock in
a splay from a mylonite zone that is close (800 feet) to the
probable tin granite at Nettle Mountain. The Rockfish
mylonite zone shown in Figure 1 is believed to be continuous
to the southwest and joins with the Fries fault zone. At Brush
Creck, Montgomery County, Virginia, gold occurs within
mylonitized metavolcanic rocks and metasediments (Pilot
gneiss and Little River gneiss) of the Fries fault (Driscoll,
1989). Detailed laboratory examination of Brush Creek
samples from within the Fries mylonite zone showed that the
gold is epithermal and occurs in irregular and discontinuous
quartz veins. The epithermal quartz vein has a distinctly
different inclusion signature from, and truncates, mylonitic
quartz. Driscoll concluded that the Brush Creek gold deposits
were controlled by brittle fracture tectonics and were there-
fore probably related to a tectonic event sometime after late
Mississippian time (latest mylonitization associated with the
Fries fault).

Figure 34. Microphotograph of a sample of cataclastic leu-
coquartzmonzonite under cross-polarized light at 20x show-
ing hematite-filled fractures with traces of pyrite. From
bedrock at anomaly Y (Figure 2A), location G (Figure 5),
Yankee Horse Ridge.

At Yankee Horse Ridge the precious metal anomalies are
associated with very sparse mineralization within cataclas-

tized, felsic, quartz monzonite (alaskite). Geochemical
anomalies are also spatially associated with nearby rhyodacite
dikes (Figure 35). The dikes are the aplites of Hudson (1981)
who considered them to be peripherally associated with the
Nettle Mountain granite which intrudes mafic granulite, not
quartz monzonite. The emplacement of Late Precambrian-
age felsic plutons like the Nettle Mountain granite is consid-
ered to be rift-related and therefore close to subparallel, high-
angle rift faults. These rift faults would later be reactivated
and become low-angle mylonite zones in Paleozoic time.
Any felsic pluton of Crossnore affinity (mantle plume driven)
and its associated dike swarms and paleo-hot springs would
necessarily be contained in or close to cataclastic zones. Itis
also possible, but less likely, that metal-rich brines and hot
springs were active along the rift fractures themselves with-
out coming from a near surface felsic pluton. The metal-rich
brines would later be remobilized during Paleozoic-age cala-
clastic events. Gold is now known to be much more mobile
than previously thought so that caution must be shown in
genetic interpretations.

! 3, P ;
Figure 35. Microphotograph of a sample from the rhyodacite
dike under cross-polarized light at 20x showing radiate
structure which may be a devitrification spherulite. From
felsite outcrop 150 feet from anomaly Y (Figure 2A).

Hudson and Dallmeyer (1982) might be incorrectin their
assumption that the date of 634 to 637 m.y. for the mica from
Irish Creek greisen is coeval with the Nettle Mountain granite
because the Nettle Mountain material was never dated di-
rectly and does not occur, or at least has not been observed,
at the Irish Creek mines. There may be multiple intrusions of
different ages at the Yankee Horse Ridge-Nettle Mountain
locality.

During this investigation, the writer noted exposures of
a hornblende granite in the stream bed of Neule Creek
between the area mapped as biotite granite and the greisen
aplite on Yankee Horse Ridge. The hornblende granite in the
Nettle Creek stream bed contains xenoliths, up to three feetin



PUBLICATION 112 19

Figure 36. Bedrock in Nettle Creek showing rhyodacite and
Catoctin(?) metabasalt xenoliths in hornblende granite, loca-
tion F, Figure 2A.

Figure 37. Bedrock in Nettle Creek showing Catoctin(?)
metabasalt xenolithsin hornblende granite, location F, Fiugre
2A.

Figure 38. Bedrock in Nettle Creek showing Catoctin(?)
metabasalt xenoliths in hornblende granite, location F, Fig-
ure 2A.

Figure 39. Bedrock in Nettle Creek showing Catoctin(?)
metabasalt xenoliths in hornblende granite.

length, of Catoctin-like greenstone, felsic dikerock, and feld-
spathic quartzite containing visible, rounded, clasts (Figures
36, 37, 38, and 39). The occurrence of the xenoliths in the
hornblende granite at the periphery of the Nettle Mountain
granite supports the supposition of multiple intrusions as
noted in association with fluorite-biotite granites in Rap-
pahannock County by Lukert and Halladay (1980) and Tollo
and Arav (1987). Itis possible that the xenolithic granite in
Nettle Creek could be Paleozoic in age and not Late Precam-
brian. It is also possible that the granite is not a xenolithic
border facies of different composition than the Nettle Moun-
tain biotite granite. There is also no date on the rhyodacite
dikes at Yankee Horse Ridge. The assumption is that the
dikes are associated with the Nettle Mountain granite and are
Late Precambrian age, but the Nettle Mountain granite has
never been directly dated. Similar felsic dikes are known to
cut Lynchburg Group rocks.

It is possible that gold might also be associated with
Middle Cambrian-, Devonian-, Mississippian-, or even as
yet, unrecognized Mesozoic- or Eocene-age hydrothermal
events. Without more data, the writer prefers a Late Precam-
brian-age gold-tin event with reactivation.

At the Yankee Horse Ridge gold occurrence, no visible
gold has been observed. It is a reasonable assumption that
gold probably occurs in association with hematite-filled
fractures cutting across mylonitic textures (Figure 34). Itis
known from other Yankee Horse Ridge samples that pyrite is
occasionally preserved as unoxidized cores with limonite or
hematite husks as well as in rare boxworks (in a few places).
Additionally, typical oxidation minerals from pyrite, like
jarosite, have been identified in fresh bedrock at Yankee
Horse Ridge. The general association of gold with and in
pyrite or arsenopyrite is well known. The time of minerali-
zationhowever, remains uncertain until gold has been located
and identified by microscopic and microprobe examination
and additional rock age dating is done.

Blue Ridge province gold is associated with cataclastic
zones. Elevated thorium, uranium, and potassium values are
also associated with limited sections of a few cataclastic
zones. High radioactivity might also be associated with tin
and gold mineralization as well as pegmatoid zones. Further
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length, of Catoctin-like greenstone, felsic dike rock, and feld-
spathic quartzite containing visible, rounded, clasts (Figures
36, 37, 38, and 39). The occurrence of the xenoliths in the
hornblende granite at the periphery of the Nettle Mountain
granite supports the supposition of multiple intrusions as
noted in association with fluorite-biotite granites in Rap-
pahannock County by Lukert and Halladay (1980) and Tollo
and Arav (1987). It is possible that the xenolithic granite in
Nettle Creek could be Paleozoic in age and not Late Precam-
brian. It is also possible that the granite is not a xenolithic
border facies of different composition than the Nettle Moun-
tain biotite granite. There is also no date on the rhyodacite
dikes at Yankee Horse Ridge. The assumption is that the
dikes are associated with the Nettle Mountain granite and are
Late Precambrian age, but the Nettle Mountain granite has
never been directly dated. Similar felsic dikes are known to
cut Lynchburg Group rocks.

It is possible that gold might also be associated with
Middle Cambrian-, Devonian-, Mississippian-, or even as
yet, unrecognized Mesozoic- or Eocene-age hydrothermal
events. Without more data, the writer prefers a Late Precam-
brian-age gold-tin event with reactivation.

At the Yankee Horse Ridge gold occurrence, no visible
gold has been observed. It is a reasonable assumption that
gold probably occurs in association with hematite-filled
fractures cutting across mylonitic textures (Figure 34). Itis
known from other Yankee Horse Ridge samples that pyrite is
occasionally preserved as unoxidized cores with limonite or
hematite husks as well as in rare boxworks (in a few places).
Additionally, typical oxidation minerals from pyrite, like
jarosite, have been identified in fresh bedrock at Yankee
Horse Ridge. The general association of gold with and in
pyrite or arsenopyrite is well known. The time of minerali-
zation however, remains uncertain until gold has been located
and identified by microscopic and microprobe examination
and additional rock age dating is done.

Blue Ridge province gold is associated with cataclastic
zones. Elevated thorium, uranium, and potassium values are
also associated with limited sections of a few cataclastic
zones. High radioactivity might also be associated with tin
and gold mineralization as well as pegmatoid zones. Further
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work is needed to establish anomalously high radioactivity as
a reliable prospecting technique for other elements besides
uranium.

Discrimination of potentially mineralized cataclastic
zones can be made by selective geochemical soil traverses
across ductile and brittle deformation zones using analyses
for gold (0.01 ppm or greater), silver (1 ppm or greater) and
arsenic (5 ppm or greater) as guides. Tin values (greater than
20 ppm) in soil may indicate either tin, base metal, or gold
mineralization. The base-metal anomalies found in this
investigation may indicate a previously unrecognized type of
mineralization in Virginia.
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BM-1 BM-2 BM- BM4
ppm Ag 2 1 4 5
ppm Sn 58 20 149 416
ppm F 495 310 495 1,195
Ppm As 2000 700 1500 12,500
ppm Be 34 29 47 6.1
ppm Pb 72 118 400 607
pPrmZn 119 189 161 161
ppm Cu 37 26 108 109
ppm Ba 130 160 230 160
ppmRb 40 31 23 38
ppmLi 43 30 18 32
% Fe 435 332 3.74 435
ppm Mn 21 475 553 562
ppm Ni 12 12 6 7
ppm Co 11 11 15 16
ppm Cr 15 14 7 9

BM-1: residual soil above entrance to adit
BM-2: soil near entrance to adit

BM-3: soil on leveled area in front of adit
BM-4: soil 20 feet downslope from adit

Gamma spectrometer stations:

BMR-1: 100 feet northwest of Buck Mountain mine adit
BMR-2: 25 feet nosthwest of adit

BMR-3: entrance to adit

BMR-4: 30 feet inside adit at rock face

BMR-5: 100 feet southeast of adit entrance

BMR-6: 100 feet southeast of adit

BMR-1 BMR-2 BMR- BMR4 BMR- BMR-6
ppm Th 106 78 74 47 16 139
ppmU 28 89 49 33 50 32

WU 38 09 | 12 15 43
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111c1efelmcemmbensmepmntomhegmphml"igme8.
Rb/Sr = 0.12 Tarkey Mountain pluton, central Bloe Ridge province of Virginia; massive chamockite and quartz
mangerite and host rock for Mobley Mountain fluorite-biotite granite; age uncertain, probably Grenville; apparently
baren; two analyses (Brock, 1981; Brock and others, 1987).

Rb/Sr = 0.17 Alkali granites, five plutons from Charlotte belt of western North Carolina piedmont; coarse grained,
discordant, minor biotitc; age about 300 m.y.; barren (Sando, 1979; Rogers and Greenberg, 1981)

Rb/Sr = 0.38 Mobley Mountain leucocratic dikes, central Blue Ridge province of Virginia; average of 5 analyses;
barren (Brock, 1981; Brock and others, 1987).

Rb/Sr=0.39 Porphyritic quartz monzonite (adamellite), Irish Creek tin area; proximal to Nettle Mountain “tin granite,”
age uncertain, may be Grenville; barren; average of 3 analyses (Hudson, 1981).

Rb/Sr = 0.59 Mobley Mountain fluorite-biotite granite, 14.3 miles southeast of Nettle Mountain granite (Irish Creek
tin granite ?), central Blue Ridge province of Virginia; arithmetic mean of 14 analyses (Brock, 1981; Brock and others,
1987).

Rb/Str = 0.60 Shaeffer Hollow leucocratic granite in contact with Mobley Mountain granite, central Blue Ridge
Mountains or province of Virginia; barren; (Brock, 1981; Brock and others, 1987).

Rb/Sr=1.44 High potassium alkali granitc, New Mexico; barren; age approximately 1400 m.y.; average of 15 analyses
(Condie, 1978; Condie and Buddington, 1979; Rogers and Greenberg, 1981, p. 62).

Rb/Sr= 1.5 Saint George granite, New Brunswick, Canada; vicinity of tin bearing plutons; barren of all mineralization
(Dagger, 1972; Govett, 1983).

Rb/Sr = 2.24 Biotite granite, Halifax pluton Nova Scotia; barren (reference in Govett, 1983).

Rb/Sr=2.76 Average from abundance data for granites of all kinds (Turekian, 1977); earlier publication (Turekian and
‘Wedepohl, 1961) indicates Rb/Sr is 0.25 in high-calcium granitic rocks and 1.70 in low-calcium granitic rocks.

Rb/Sr = 3.09 Biotite granite, West Dalhousie pluton, Nova Scotia, Canada; barren (Govett, 1983).

Rb/Sr = 4.9 Porphyritic biotite granite-adamellite, Anchor mine, Tasmania, Australia; average of 6 analyses; barren
country-rock pluton (Groves, 1972).

Rb/Sr = 5.0 Carnmenellis-adamellite tin granite, Cornwall tin district, SW England; 1 sample (Butler, 1953; Govett,
1983).

Rb/Sr=5.05 Nettle Mountain fluorite-biotite granite, 3 miles from Irish Creek tin mine, central Blue Ridge Mountains
or province of Virginia; average of 3 analyses ranging from 3.61 to 7.48 (Hudson, 1981).

Rb/Sr = 7.45 Barren hornblende granite; Nigerian tin district (Olade, 1980).

Rb/Sr = 8.6 St. Austell biotite-muscovite tin granite, Corwall district, SW England; 1 analysis (Exley, 1958; Govett,
1983).

Rb/Sr=8.74 Yankee Horse Ridge greisen, central Blue Ridge Mountains or province of Virginia; 1 sample (Hudson,
1981).

Rb/Sr=9.1 Finlayson tin granite, Queensland, Austmha, economic mineralization; average of 6 analyses (Sheraton
and Black, 1973 in Govett, 1983).

Rb/St = 10.0 Alaskite, Halifax pluton, Nova Scotia, Canada; barren (Smith and Turek, 1976; Govett, 1983).
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20. Rb/Sr=14.9 New Ross pluton, alaskite and leucogranite, Nova Scotia, Canada (Smith and Turek, 1976; Govett, 1983).
21. Rb/Sr = 16.0 Elizabeth Creek granite, Queensland, Australia; Sn, Mo, W, Pb, Cu, and minor Au, Bi, Ag, and Sb
mineralization (Sheraton and Black, 1973 in Govett, 1983).
22, Rb/Sr = 16.9 Porphyritic lithium-mica granite, St. Austell, Comwall tin district, SW England; mineralized (Exley,
1958; Govett, 1983).
23. Rb/Sr = 21.5 Barren granite from Jurassic ring complex, Nigerian tin district; average of 73 samples (Olade, 1980).
24. I;;;g; = 29.9 Biotite granite, New Ross pluton, Nova Scotia, Canada; mineralized (Smith and Turek, 1976; Govett,
25. Rb/Sr=57.1 Mt. Pleasant mine, granite porphyry, New Brunswick, Canada; W, Mo, Bi, and Sn mineralization (Dagger,
1972; Govett, 1983).
26. Rb/Sr = 93 Mineralized tin granite, Jurassic ring complex, Nigeria; average of 73 samples (Olade, 1980).
27. Rb/Sr = 140 Granite with other mineralization, Nigeria (Olade, 1980).
28. Rb/Sr = 207 Biotite-muscovite granite, Anchor mine, Tasmania, Australia (Groves, 1972).
APPENDIX V
Background and anomaly statistics for soil geochemistry

Background statistics are based on 22 soil samples taken along traverse B 250 feet NE of, and parallel to, the NW-SE trending

traverse A across Irish Creek mine adit #1 on Panther Creek.

Tin ppm
Background soil value, this study, arithmetic mean 6.2
Background standard deviation, this study 4.1
Mean plus one standard deviation 10.3
Mean plus two standard deviations 144
Mean plus two-and-one-half standard deviations 164
Mean plus three standard deviations 18.6
Background values from literature

Soil, average (Rose and others, 1979) 10.0

Soil over granite and gneiss, mean

(Shacklette and Boerngen, 1984) 12

Standard soil, England, mean (Ure and

Bacon, 1978) 45

Unmineralized soil, Bathurst tin district,

Canada range (Presant, 1971) 1.14.6

Unmineralized soil, range (Chapman, 1972) 1-11
Threshold soil value, in this study 16
Anomalous soil value, in this study 20
Tungsten ppm
Background soil value, this study, arithmetic mean 2.36
Background standard deviation, this study 2.87
Mean plus one standard deviation 523
Mean plus two standard deviations 8.1
Mean plus three standard deviations 10.97
Background value from literature

Soil, average (Brooks, 1972) 1

Two soils from the United States, mean (Furr and others, 1980) 12,25
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Beryllium

Background soil value, this study, arithmetic mean
Background standard deviation, this study
Mean plus one standard deviation
Mean plus two standard deviations
Mean plus two-and-one-half standard deviations
Mean plus three standard deviations
Background values from literature
Soil over granite and gneiss, range (Shacklette and Boerngen, 1984)
Soil over granite and gneiss, mean (Shacklette and Boerngen, 1984)
Unmineralized soil near beryl pegmatite in
~ Rhodesia and Uganda, range (Debnam and Webb, 1960)
Threshold soil value, this study
Anomalous soil value, this study

Arsenic

Background soil value, this study, arithmetic mean

Background standard deviation, this study

Mean plus one standard deviation

Mean plus two standard deviations

Mean plus three standard deviations

Background values from literature
Surface soil over granite and gneiss in
the United States, mean (Shacklette and Boerngen, 1984)
Surface soil over granite and gneiss in the
United States, range (Shacklette and Boerngen, 1984)
Surface soil, uncultivated, median (Connor and Shacklette, 1975)

Normal (unmineralized) soil, worldwide, 327 localities, range (Boyle and

Jonasson, 1973)
Soil and till near an arseniferous deposit, 193 samples, worldwide,
range (Boyle and Jonasson, 1973)

Arsenic content of granite and aplite, 116 samples, worldwide, range (Boyle and

Jonasson, 1973)
Threshold soil value, this study
Anomalous soil value, this study

Fluorine

Background soil value, this study, arithmetic mean
Background standard deviation, this study
Mean plus one standard deviation
Mean plus two standard deviations
Mean plus two-and-one-half standard deviations
Mean plus three standard deviations
Background values from literature
Soil, median value (Connor and Shacklette,1975)
Soil over granite and gneiss, range (Shacklette and Boerngen, 1984)
Threshold soil value, this study

Rubidium

Background soil value, this study, arithmetic mean
Background standard deviation, this study

Mean plus one standard deviation

Mean plus two standard deviations

Mean plus two-and-one-half standard deviations
Mean plus three standard deviations

Background values from literature

3.6

0.7-15
1.5

0.1-55
2-8000
0.18-15

bpm

422
150
573
724

875

300
20-540
724

ppm

49.7
18.6
68.3
86.9
96.2
105.5

29
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Soil, uncultivated, median (Connor and Shacklette, 1975)

Soil over granite and gneiss, range (Shacklette and Boerngen, 1984)
Threshold soil value, this study
Anomalous soil value, this study

Lithium

Background soil value, this study, arithmetic mean
Background standard deviation, this study
Mean plus one standard deviation
Mean plus two standard deviations
Mean plus two-and-one-half standard deviations
Mean plus three standard deviations
Background values from literature
Uncultivated soil, median (Connor and Shacklette, 1975)
Soil over granite and gneiss in the United States, mean (Shacklette and Boerngen, 1984)
Range in soil over granite and gneiss Shacklette and Boerngen, 1984
Threshold soil value, this study
Anomalous soil value, this study

Lead

Background soil value, this study, arithmetic mean
Background standard deviation, this study
Mean plus one standard deviation
Mean plus two standard deviations
Mean plus two-and-one-half standard deviations
Mean plus three standard deviations
Background values from literature
Uncultivated soil, median (Connor and Shacklette, 1975)
Surface soil over granite and gneiss in the United States, mean (Shacklette and
Boemgen, 1984)
Surface soil over granite and gneiss, range Shacklette and Boerngen, 1984
Threshold soil value, this study
Anomalous soil value, this study

Zinc

Background soil value, this study, arithmetic mean
Background standard deviation, this study
Mean plus one standard deviation
Mean plus two standard deviations
Mean plus two-and-one-half standard deviations
Mean plus three standard deviations
Background values from literature
Uncultivated soil, median (Connor and Shacklette, 1975)
Surface soil over granite and gneiss in the United States, mean (Shacklette and
Boemgen, 1984)
Surface soil over granite and gneiss, range (Shacklette and Boerngen, 1984)
Threshold soil value, this study
Anomalous soil value, this study

Copper

Background soil value, this study, arithmetic mean
Background standard deviation, this study

Mean plus one standard deviation

Mean plus two standard deviations

Mean plus two-and-one-half standard deviations
Mean plus three standard deviations

35
<20-210
68
87

ppm

27.1
7.5

34.6
42.1
459
49.6

22
235
10-45
42

50

ppm
316

36.7
41.7
443
46.8

17

21
10-50

47

ppm

104.9
18.5

123.4
141.9
151.2
160.4

36

73.5
30-125
142
160

ppm
14.8

224
30.0
338
37.6
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Background soil values from literature
Uncultivated soil, median (Connor and Shacklette, 1975)
Surface soil over granite and gneiss, mean (Shacklette and Boerngen, 1984)
Surface soil over granite and gneiss, range (Shacklette and Boerngen, 1984)
Threshold soil value, this study
Anomalous soil value, this study

31

15

7-70
34
38
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APPENDIX XIII

Results of th hemical is of soil samples for gold, Yank rse Ri
Geochemical soil traverses across Yankee Horse Ridge anomaly. Traverses trend NNW normal to the ENE mylonite trend.
Traverses are 600 feet in length. Traverse YG-2 crosses area Y (with detailed soil geochemisiry for other metals). Traverse YG-
1is 200 feet WSW of YG-2 and parallel to it and traverse YG-3 is 200 feet ENE and parallel to YG-2 (Figure 29). Assays,inppm,
were performed by Northeast Geochemical and Assay Company, Yarmouth, Maine.
YG-1
300NW 250NW 200NW 150NW 100NW SONW 0 S0SE 100SE 150SE 200SE 250SE 300SE

0.0.16 0006 0.006 0016 0.005 0.005 0004 0004 0003 0004 0002 0002 0.002

YG-2
300NW 250NW 200NW 1SONW 100NW 7SNW SONW ONW 25SE S0SE I75SE  100SE 150SE
0.005 0.002 0003 0.005 0.002 0.003 0470 0.007 0025 0.013 0019 0025 0.025
200SE 250SE
0.004 0.003
YG-3
300NW 250NW 200NW 150NW 100NW SONW ONW S0SE 100SE 150SE 200SE
0003 0.042 0025 0015 0036 0512 0003 0002 <0.002 0002 <0.002
250SE 300SE
0.002 0.326
APPENDIX XIV
Whole-rock an for gold and silver, Yankec Horse Ri
Assays of samples 1 through 13 by Northeast Geochemical and Assay Company, Yarmouth, Maine.
Values are in parts per million and Troy ounces per short ton.
ppm  oz/short ppm oz/short

Au  1onAu Az tonAg
1. Yankee Horse Ridge geochemical anomaly Y: mylonitic bedrock,
disturbed by bulldozer, goethite pod with relict pyrite. 1.03 0.03 299 872

2. Yankee Horse Ridge geochemical anomaly Y: sheared felsic
bedrock, disturbed by bulldozer, traces of yellow-green
mineral (beudantite?). n.d. nil 15 044

3. Yankee Horse Ridge geochemical anomaly Y: mylonitic alaskite,
no obvious mineralization, bedrock disturbed by bulldozer. n.d. nil 19.7 0.57

4. Yankee Horse Ridge geochemical anomaly Y: sheared alaskite, ,
bedrock disturbed by bulldozer, yellow jarositic boxworks. 1.7 0.05 10.2 0.30

5. Yankee Horse Ridge geochemical anomaly Y: diamond drill
hole #1, vertical, ground core from 0-11 feet, core recovery
very poor, <5%. 0.01 nil 0.80 0.023



40 VIRGINIA DIVISION OF MINERAL RESOURCES

6. Yankee Horse Ridge geochemical anomaly Y: diamond drill
hole #1, ground core from 11-15 feet, core recovery very
poor, <5%. 0.005 nil 04 0.012

7. Yankee Horse Ridge geochemical anomaly Y: diamond drill
hole #1, ground core from 17 feet, felsic mylonitic rock, :
core recovery very poor, <5%. 0.005 nil 0.3 0.009

8. Yankee Horse Ridge geochemical anomaly Y: diamond drill
hole #1, bottom of hole at 21 feet, felsic mylonite bedrock 0.004 nil 0.5 0.015
9. Yankee Horse Ridge geochemical anomaly Y: panned concentrate
from drill cuttings from hole #1. 0.286 0008 31 0904
10. Yankee Horse Ridge: bedrock beside hole #1, iron-stained, vuggy
mylonite with limonitic and hematitic boxworks. 5.85 0.171 73 0213
11. Yankee Horse Ridge: grab sample, bedrock disturbed by bulldozer,
10 feet south of hole #1. 0.10 0.003 5 0.146
12. Yankee Horse Ridge geochemical anomaly Y: 125 feet ENE of hole #1,
in mylonite zone, sheared sericitic, felsic mylonite. 0.057 0002 56 1.63
13. Irish Creek tin mine, Panther Creek #2 workings: arsenopyrite with
scorodite. 267.3 7.796 382.6 11.16
14. Irish Creek tin mine, Panther Creek # 2 workings, arsenopyrite, assay
from Hotchkiss (1883) listed in Glass and others (1958). 252.3 736 2513 733
APPENDIX XV
Procedures

Soil samples were collected by shovel, rowel, or soil augur from beneath the humic layer of forest litter, then oven-dried
and sieved to -100 mesh with nylon screened sieves. One-half gram soil samples were digested with hot 1:1 HCl in Teflon beakers,
filtered, and then analyzed by atomic absorption spectroscopy. Analyses for lead, zinc, copper, iron, manganese, cobalt,
chromium, lithium, strontium, barium, and rubidium were done at the Virginia Division of Mineral Resources laboratory with a
Techtron AAS unit. Prior to analysis solutions for rubidium, strontium, barium, and lithium were spiked with potassium chloride.
Tin values in soil were determined by X-ray emission using pressed pellets prepared by mixing one gram of soil and one gram
of cellulose in a SPEX mixing unit. Measurements were made on a Diana X-ray emission unit which has a limit of detection for
tin of 4 parts per million,

Gold concentration in whole-rock samples was determined by the fire assay technique by Iron King, Inc., Laboratory,
Humboldt, Arizona and by Northeast Geochemical Laboratory, Yarmouth, Maine. Gold and silver concentrations in soil samples
were determined by fire assay followed by atomic absorption by Northeast Geochemical Laboratory.

Fluorine, arsenic, and tungsten values in soil were determined by Western Analytical, Inc., Salt Lake City and by Blue
Ridge Analytical Laboratory, Charlottesville, Virginia. Some tungsten data are included in appendices V, VI, and VII. Fluoride
concentration in soils was determined by NaOH fusion and specific ion electrode; arsenic concentration was obtained by pyro-
sulfate fusion followed by HCl leach, dithiol extraction, and then determined colorimetrically.

Water samples from streams were filtered in the field using a Schleicher and Schuell Antlia pneumatic hand pump with
a0.45 micron millipore filter. Water samples for fluorine and sulfate were not acidified prior to ion chromatography determination
at the University of Virginia Environmental Science laboratory. Stream water samples for analysis of lithium, iron, and other
metals were acidified and refrigerated prior to atomic absorption analysis at the Virginia Division of Mineral Resources labora-
tory.

Radioactivity measurements for potassium, uranium, and thorium were made in the field with a portable Geometric GR-
310 gamma spectrometer with a 2 inch x 2 inch (104 cm?) thallium-doped sodium iodide detector and an internal Ba'* reference
isotope. All measurements were made at ground level using the average of three 100-second count periods. Reduction of count
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averages to estimates of element concentration in whole-rock was made using empirical constants based on measurements of rock
analyzed by chemical techniques plus Compton stripping constants. Average counts per second (cps) were used in the element
concentration estimates as:

%K ,0=(1.20)(0.96)(K cps - 1.32U cps - 0.1Th cps)

ppm U=(13)(U cps - 0.83Th cps)

ppm Th=(28)(Th cps - 0.089U cps)



VINIDYHIA ‘AINNOD ADANDID0A
‘VAIAV NLL YAFAD HSIAI ‘A0dAIY ASYOH ATINVA LV SAITVINONY WNIIOHL ANV ‘STVLAN ASvd
‘NIL ANV ‘NOLLVZI'TVIANIN d'TO9 = ZIT NOLLVOI'TANd = SADANOSHA TVIANIIN A0 NOISIAIA VINIODIIA






